深圳派祺光学科技有限公司

扫一扫二维码

主营产品:激光保护镜片

全国服务热线:

0755-29022109

联系方式

CONTACT

  • 深圳派祺光学科技有限公司
  • 联系人: 黄先生
  • 电话: 0755-29022109
  • Q Q:842470350
  • 东莞办事处:东莞长安镇涌头涌盛路豪丰工业园B栋2楼
  • 毛小姐:手 机:15889606603 微信:wxmlj1989
当前位置: 首页 > 新闻资讯

光学干涉滤光片光学镀膜

发表时间:2018-02-26

光学薄膜是各种先进光电技术中不可缺少的一部分,它不仅能改善系统性能,而且是满足设计目标的必要手段,光学薄膜的应用领域设及光学系统的各个方面,包括激光系统,光通信,光显示,光储存等,主要的光学薄膜器件包括反射膜、减反射膜、偏振膜、干涉滤光片和分光镜等等。它们在国民经济和国防建设中得到了广泛的应用,获得了科学技术工作者的日益重视。

目前,光学镀膜材料常用品种已达60余种,而且其品种、应用功能还在不断被开发。近年来以发展到了金属膜系,当金、银、铜和铝的厚度为7~20um时,其对可见光的透射率为50%,而红外光透射率小于10%,这种薄膜已成功地应用于阿波罗宇宙飞船的面板,用于透过部分可见光,而反射几乎全部的红外光以进行热控制。以下本文主要介绍光学薄膜的特性原理及分类。


一、光学薄膜的定义

由薄的分层介质构成的,通过界面传播光束一类光学介质材料,光学薄膜的应用始于20世纪30年代,光学薄膜已经广泛用于光学和光电子技术领域,制造各种光学仪器。制备条要求件高而精。

光学薄膜的定义是:涉及光在传播路径过程中,附着在光学器件表面的厚度薄而均匀的介质膜层,通过分层介质膜层时的反射、透(折)射和偏振等特性,以达到我们想要的在某一或是多个波段范围内的光的全部透过或光的全部反射或偏振分离等各特殊形态的光。

二、薄膜干涉原理

1、光的波动性

19世纪60年代,美国物理学家麦克斯韦发展了电磁理论,指出光是一种电磁波,使波动说发展到了相当完美的地步。

由光的波粒二象性可知,光同无线电波、X射线、?射线一样都是电磁波,只是它们的频率不同。电磁波的波长λ、频率u和传播速率V三者之间的关系为:

V=λu

由于各种频率的电磁波在真空中德传播速度相等,所以频率不同的电磁波,它们的波长也就不同。频率高的波长短,频率低的波长长。为了便于比较,可以按照无线电波、红外线、可见光、紫外线、X射线和伽玛射线等的波长(或频率)的大小,把它们依次排成一个谱,这个谱叫电磁波谱。

在电磁波谱中,波长长的是无线电波,无线电波又因波长的不同而分为长波、中波、短波、超短波和微波等。其次是红外线、可见光和紫外线,这三部分合称光辐射。在所有的电磁波中,只有可见光可以被人眼所看到。可见光的波长约在0.76微米到0.40微米之间,仅占电磁波谱中很小的一部分。再次是X射线。波长短的电磁波是y射线。

光既然是一种电磁波,所以在传播过程中,应该变现出所具有的特征---干涉、衍射、偏振等现象。

2、薄膜干涉

薄膜可以是透明固体、液体或由两块玻璃所夹的气体薄层。入射光经薄膜上表面反射后得首束光,折射光经薄膜下表面反射,又经上表面折射后得第二束光,这两束光在薄膜的同侧,由同一入射振动分出,是相干光,属分振幅干涉。若光源为扩展光源(面光源),则只能在两相干光束的特定重叠区才能观察到干涉,故属定域干涉。对两表面互相平行的平面薄膜,干涉条纹定域在无穷远,通常借助于会聚透镜在其像方焦面内观察;对楔形薄膜,干涉条纹定域在薄膜附近。

实验和理论都证明,只有两列光波具有一定关系时,才能产生干涉条纹,这些关系称为相干条件。薄膜的相干条件包括三点:两束光波的频率相同;束光波的震动方向相同;两束光波的相位差保持恒定。

薄膜干涉两相干光的光程差公式为:

Δ=ntcos(α)?λ/2

式中n为薄膜的折射率;t为入射点的薄膜厚度;α为薄膜内的折射角;λ/2是由于两束相干光在性质不同的两个界面(一个是光疏介质到光密介质,另一个是光密介质到光疏介质)上反射而引起的附加光程差。薄膜干涉原理广泛应用于光学表面的检验、微小的角度或线度的精密测量、减反射膜和干涉滤光片的制备等。

光是由光源中原子或分子的运动状态发生变化辐射出来的,每个原子或分子每一次发出的光波,只有短短的一列,持续时间约为10亿秒对于两个独立的光源来说,产生干涉的三个条件,特别市相位相同或相位差恒定不变这个条件,很不容易满足,所以两个独立的一般光源是不能构成相干光源的。不仅如此,即使是同一个光源上不同部分发出的光,由于它们是不同的原子或分子所发出的,一般也不会干涉。